SUBSTITUENT EFFECTS ON ¹³C-SCS OF SUBSTITUTED ETHENES AND PROPENES

Naoki Inamoto,* Shozo Masuda, (the late) Kazuo Tori,[†] and Junko Nishikawa[†] Department of Chemistry and Research Centre for Spectrochemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan, and [†]Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

<u>Abstract</u>: C_{α} -SCS in XCH=CH₂ exhibited three linear relationships with the ι (iota) value depending upon the hybridization due to the substituent, and C_{β} -SCS showed an approximate correlation with σ_{R}° . Other ¹³C-SCS in alkanes could be expressed by the $\iota - \sigma_{R}^{\circ}$ DSP equation.

¹³C-SCS of the C₁ atom (C₁-SCS) in monosubstituted ethenes (<u>A</u>) show no correlation with C₂-SCS,¹ but a correlation exists between C₁- and C₂-SCS in 3-substituted 1-propenes (<u>B</u>)² and 4-substituted 1-butene (<u>C</u>)³ which have more remote substituent. C₂-SCS of <u>A</u>⁴ and C₁- and C₂-SCS of <u>B</u>⁵ and <u>C</u>³ can be correlated with Taft's DSP equation.⁶ C₂- and C₃-SCS of 3-substituted 5,5-dimethyl-2-cyclohexenones (<u>D</u>)⁷ do not show clear correlations for several parameters. However, Bedford and Taylor⁸ suggested that C₃- and C₂-SCS of <u>D</u> can be correlated with substituent electronegativities (χ_X) and Taft's σ_R° values, respectively.

We previously proposed a new inductive substituent parameter (ι , iota)⁹ and showed that ¹³C-SCS are generally represented by Eq. (1).¹⁰ C_{α}-SCS of monosubstituted alkanes are especially correlated only with ι values.^{9a,C}

$${}^{13}C-SCS = a\Delta\iota + b\sigma_{D}^{\circ} + c \tag{1}$$

where $\Delta \iota = \iota - \iota_{H} = \iota - 2.000$.

Reexamination of ¹³C-SCS in series <u>A</u> and <u>B</u> using various other substituents showed that C_1 - and C_2 -SCS in <u>A</u> are approximately correlated with ι and σ_p° values, respectively.

Table 1 shows the new and reported data for series <u>A</u> and <u>B</u>. Good correlations were observed among the corresponding ¹³C-SCS in <u>A</u>, <u>D</u>, and 2-substituted indenes (<u>E</u>).¹¹ The results of statistical treatment with Eq. (1) and Taft's DSP equation are shown in Table 2, where the excluded substituents indicated a considerable deviation from a linear relationship between the corresponding ¹³C-SCS in each system.

	Table I.	*°C-SCS dat	a ' in XCH=C	H_2 (<u>A</u>) and XCH ₂	$CH=CH_2(\underline{B})$	
Х	<u>A</u> C ₁ -SCS	-	х	\underline{B} C ₃ -SCS	C ₂ -SCS	C ₁ -SCS
Н	(122.8) ^{b)} (122.8) ^b) _H	(18.7) ^{b)}	(136.2) ^{C)}	(115.9) ^{C)}
Me ^{d)}	-10.8		Me ^{a)}	-8.7	-4.3	2.4
Et ^{d)}	-17.7	9.3	Et ^{e)}	-17.5	-2.8	1.4
n-Pr ^{e)}	-16.2	8.3	n-Pr ^{d)}	-15.2	-2.6	1.7
n-Bu ^{d)}	-16.0	8.6	$CH=CH_2^{f}$	-19.0	-0.5	0.3
t-Bu ^{C)}	-26.9	13.0	Ph	-21.6	-1.2	0.2
Ph	-14.1	9.0	CN	-2.8	10.2	-3.8
CN	15.0	-14.5	COOH	-20.2	6.5	-3.2
СНО	-15.8	-14.8	\mathtt{SiMe}_3	-6.0	1.0	3.3
COMe	-14.7	-6.1	NH2	-26.2	-3.8	2.4
$CONH_2$	-7.5	-4.7	NMe ₂	-44.3	0.2	-1.4
соон	-5.5	-10.0	NEt_2	-37.7	0.1	-1.0
COOMe	-5.5	-7.8	NHCSNH2	-28.4	3.7	-1.9
COOEt	-6.0	-7.6	NCS	-29.0	5.7	-1.8
COCl	-10.3	-13.7	OH	-44.8	-1.3	0.8
ccl³d)	-17.5	7.7	OMe ^{f)}	-54.2	0.5	0.2
$SiMeCl_2$	-10.5	-14.0	OEt ^{f)}		0.4	1.2
NH ₂ h)	-16.3	38.5	OPh	-50.0	2.8	-1.6
NO2 ^{C)}	-22.8	0.4	OAc	-46.5	3.9	-2.3
OMe	-30.1	37.3	SH	-8.9	-1.2	0.5
OAc	-18.5	25.2	Cl	-26.5	2.2	-2.6
SMe ⁱ⁾	-10.6	15.1	Br	-14.0	1.9	-3.1
SEt	-9.5	12.3	I	13.3	0.5	-1.8
F ^{C)}	-29.3	30.8				
cı ^{j)}	-3.3	5.4				
Br	8.8	1.0				
I _C)	37.4	-7.7				

Table 1. ${}^{13}C-SCS$ data^{a)} in $XCH=CH_2$ (A) and $XCH_2CH=CH_2$ (B)

a) 13 C NMR spectra were recorded on a Varian NV-14 FT NMR spectrometer at 15.087 MHz at ordinary probe temperature (30°C) using about 1 mmol/ml CDCl₃ solution. Accuracies of δ_{C} (ppm downfield from internal TMS) are about ±0.1. Positive sign shows high ^C field shift. Values in parentheses are δ values. b) J.B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972). c) Ref. 1. d) J.W. de Haan, L.J.M. van de Ven, A.R.N. Wilson, A.E. van der Hoult-Lodder, C. Altona, and D.H. Faber, Org. Magn. Reson., 8, 477 (1976). e) "Selected 13 C-NMR Spectral Data," Texas A & M Univ. (API Research Project No. 44), Vol. 1 (1975). f) Ref. 2. g) F.K. Velichko, V.I. Dostovalova, N.A. Kuzmina, E.I. Fedin, and R.Kh. Freidlina, Org. Magn. Reson., 7, 46 (1975). h) J.L. Ripoll, H. Lebrum, and A. Thuillier, Tetrahedron, 36, 2497 (1980). i) G.A. Kalabin, B.A. Trofimov, V.M. Bzhezovskii, D.F. Kushnarev, S.V. Amosova, J. K. Gusarova, and M.L. Al'pert, Izv. Akad. Nauk SSSR, Ser. Khim., 576 (1975). j) J. Paasivirta, R. Versterinen, L. Virkki, and P. Pyykkö, Org. Magn. Reson., 10, 265 (1977).

	c-scs	Analysis	a or p _I	b or $ ho_R$	С	r	n
A	Δδ(C ₁)	{Eq. (1) Taft's DSP	-17.05 -18.08	11.57 22.46	-6.98 -8.51	0.785 0.676	21) (excluding t-Bu, Cl, 21) Br, I, CN, and 21) SiMeCl ₂)
	Δδ(C ₂)	$\begin{cases} Eq. (1) \\ Taft's DSP \\ Eq. (1) \\ Taft's DSP \\ \sigma_{R}^{\circ} \end{cases}$	8.11 8.58 -	-71.97 -77.85 -75.30	-0.60 -0.02 2.12	0.977 0.973 0.967	$ \left. \begin{array}{c} 24\\ 24\\ 24\\ 24 \end{array} \right\} \left. \begin{array}{c} (\text{excluding Cl, Br,} \\ \text{and I} \end{array} \right) $
₿	$\int \Delta \delta(C_3)$	$ \begin{cases} Eq. (1) \\ Taft's DSP \end{cases} $	-50.84 -32.93	17.13 53.05	-2.04 -8.76	0.960 0.777	<pre>18 { (excluding I, CN, 18 } NCS, and SiMe₃)</pre>
	$\Delta\delta(C_2)$	{Eq. (1) Taft's DSP	$11.77 \\ 18.22$	13.61 5.17	-1.70 -1.67	0.812 0.906	19 19 (excluding Cl, Br, I,
	$\Delta\delta(C_1)$	{Eq. (1) {Taft's DSP	-4.66 -7.71	-5.35 -1.99	0.70 0.80	0.663 0.785	19 and SiMe ₃) 19

Table 2. Statistical Analysis of ^{13}C -SCS in A and B^{a)}

a) The σ_1 and σ_R° values were taken from the following literatures: S. Ehrenson, R.T.C. Brownlee, and R.W. Taft, Progr. Phys. Org. Chem., <u>10</u>, 13 (1973); O. Exner, "Advances in Linear Free Energy Relationships," ed. N.B. Chapman and J. Shorter, Chapt. 1, Plenum Press, London (1972); O. Exner, "Correlation Analysis in Chemistry. Recent Advances," ed. N.B. Chapman and J. Shorter, Chapt. 10, Plenum Press, London (1978).

The results in Table 2 show that in substituted ethene systems (\underline{A} , \underline{D} , and \underline{E}) C_{α} -SCS are better represented by Eq. (1) and C_{β} -SCS can be expressed equally well by both Eq. (1) and Taft's DSP equation and show an approximate correlation with the σ_{R}° value as suggested previously.⁸ In series <u>B</u>, C_{3} -SCS are expressed well by Eq. (1), but C_{2} - and C_{1} -SCS by Taft's DSP equation. A similar trend was observed for the corresponding ¹³C-SCS in <u>D</u> and <u>E</u>.

However, C_1 -SCS in <u>A</u> showed a poor correlation with the ι values (Fig. 1). The plot gave three lines: 1) through H and alkyl groups, 2) through CCl₃- and COÄ-type groups, and 3) through other types of groups. Each line was treated separately with ι and the correlation coefficients were calculated as a total of the three lines. Similar treatment was applied to C_3 -SCS in <u>D</u> and C_2 -SCS in <u>E</u>. The results are as follows:

 $\underline{\underline{A}} \ \delta(C_1) = \begin{cases} -107.24\Delta\iota + 0.23 \ 1) \\ 80.28\Delta\iota - 34.27 \ 2) \\ -20.77\Delta\iota - 7.12 \ 3) \end{cases} (r = 0.971, n = 22) \\ (excluding t-Bu, Cl, Br, I, and SiMeCl_2) \end{cases}$

$$\underline{D} \ \delta(C_3) = \begin{cases} -85.51\Delta t & 1 \\ 73.24\Delta t & -25.24 & 2 \\ -18.78\Delta t & -7.47 & 3 \end{cases} \begin{cases} (r = 0.975, \\ n = 9 \\ (excluding \ Cl \ and \ Br) \end{cases}$$

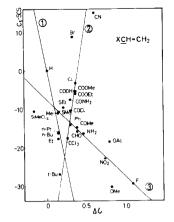


Fig. 1. Plot of C_1 -SCS in XCH=CH₂ against $\Delta \iota$.

$$\underline{E} \ \delta(C_2) = \begin{cases} -87.68\Delta i & 1 \\ 80.32\Delta i & -36.46 & 2 \\ -36.30\Delta i & -0.87 & 3 \\ (excluding i-Pr, t-Bu, Cl, and Br) \end{cases} (r = 0.941, n = 11)$$

This treatment greatly improved the correlation for sp^2-C_{ipso} -SCS, that is, ¹³C-SCS of the sp^2 carbon atom directly bonded by the substituent. The trend of the silyl group is similar to that of C_{ipso} -SCS in monosubstituted benzenes (\underline{F}) .^{9a} Since C_1 -SCS in <u>A</u> were correlated with the C_{ipso} -SCS in <u>F</u> (C_{ipso} -SCS = 0.95· C_1 -SCS + 0.05, r = 0.972, n = 19) including Cl, Br, I, and CN groups, the ruling factor is the same in both cases. The main factor is the difference in hybridization due to the three types of sub-

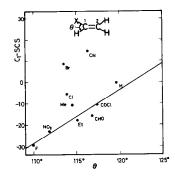


Fig. 2. Plot of C_1 -SCS against θ .

stituents, which depends on the $\Delta \iota$ value. Fig. 2 shows that C₁-SCS can be correlated with $_{\perp}XCH$ (= θ),¹² except for Cl, Br, and CN groups. C_{ipso}-SCS show a rough correlation with the ι values.^{9a} The difference may be attributed to the rigidity in <u>F</u>.

References

- 1. J. Schraml, Coll. Czech. Chem. Commun., <u>41</u>, 3063 (1976).
- 2. T. Yonemoto, J. Magn. Reson., <u>13</u>, 153 (1974).
- 3. E.A. Hill and H.E. Guenther, Org. Magn. Reson., <u>16</u>, 177 (1981).
- G.P. Ford, A.R. Katritzky, and R.D. Topsom, "Correlation Analysis in Chemistry. Recent Advances," ed. N.B. Chapman and J. Shorter, Chapt. 6, Plenum Press, New York (1978).
- 5. M.J. Shapiro, J. Org. Chem., <u>41</u>, 3197 (1976).
- W.J. Hehre, R.W. Taft, and R.D. Topsom, Progr. Phys. Org. Chem., <u>12</u>, 159 (1976).
- M. Azzaro, J.-F. Gal, S. Geribaldi, and N. Novo-Kremer, Org. Magn. Reson., 9, 181 (1977).
- 8. G.R. Bedford and P.J. Taylor, Org. Magn. Reson., 9, 49 (1977).
- 9. a) N. Inamoto and S. Masuda, Tetrahedron Lett., 3287 (1977); b) Idem., Chem. Lett., 177 (1978); c) For revised values: Idem, Chem. Lett., 1007 (1982).
- 10. N. Inamoto and S. Masuda, Kagaku no Ryoiki, 33, 105 (1979).
- 11. B. Eliasson and U. Edlund, J. Chem. Soc., Perkin Trans. 2, 403 (1981).
- 12. J.H. Callomon, H. Hirota, K. Kuchitsu, W.J. Lafferty, A.G. Maki, and C.S. Pote, "Structure Data on Free Polyatomic Molecules", Vol. 7, Group 2 of Landort-Boernstein, New Series, K.H. Hellweg, Ed., Springer-Verlag, West Berlin (1976).

(Received in Japan 10 August 1983)